Что такое модуль числа в математике. Модуль числа

Инструкция

Если модуль представлен в виде непрерывной функции, то значение ее аргумента может быть как положительным, так и отрицательным: |х| = х, х ≥ 0; |х| = - х, х

Модуль нулю, а модуль любого положительного числа – ему . Если аргумент отрицательный, то после раскрытия скобок его знак меняется с минуса на плюс. На основании этого вытекает вывод, что модули противоположных равны: |-х| = |х| = х.


Модуль комплексного числа находится по формуле: |a| = √b ² + c ², а |a + b| ≤ |a| + |b|. Если в аргументе присутствует в виде множителя положительное число, то его можно вынести за знак скобки, например: |4*b| = 4*|b|.



Если аргумент представлен в виде сложного числа, то для удобства вычислений допускается порядка членов выражения, заключенного в прямоугольные скобки: |2-3| = |3-2| = 3-2 = 1, поскольку (2-3) меньше нуля.


Возведенный в степень аргумент одновременно находится под знаком корня того же порядка – он решается при помощи : √a² = |a| = ±a.


Если перед вами задача, в которой не указано условие раскрытия скобок модуля, то избавляться от них не нужно – это и будет конечный результат. А если требуется их раскрыть, то необходимо указать знак ±. Например, нужно найти значение выражения √(2 * (4-b)) ². Его решение выглядит следующим образом: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * |4-b|. Поскольку знак выражения 4-b неизвестен, то его нужно оставить в скобках. Если добавить дополнительное условие, например, |4-b| >

Модуль нуля равен нулю, а модуль любого положительного числа – ему самому. Если аргумент отрицательный, то после раскрытия скобок его знак меняется с минуса на плюс. На основании этого вытекает вывод, что модули противоположных чисел равны: |-х| = |х| = х.

Модуль комплексного числа находится по формуле: |a| = √b ² + c ², а |a + b| ≤ |a| + |b|. Если в аргументе присутствует в виде множителя целое положительное число, то его можно вынести за знак скобки, например: |4*b| = 4*|b|.

Отрицательным модуль быть не может, поэтому любое отрицательное число преобразуется в положительное: |-x| = x, |-2| = 2, |-1/7| = 1/7, |-2,5| = 2,5.

Если аргумент представлен в виде сложного числа, то для удобства вычислений допускается изменение порядка членов выражения, заключенного в прямоугольные скобки: |2-3| = |3-2| = 3-2 = 1, поскольку (2-3) меньше нуля.

Если перед вами задача, в которой не указано условие раскрытия скобок модуля, то избавляться от них не нужно – это и будет конечный результат. А если требуется их раскрыть, то необходимо указать знак ±. Например, нужно найти значение выражения √(2 * (4-b)) ². Его решение выглядит следующим образом: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * |4-b|. Поскольку знак выражения 4-b неизвестен, то его нужно оставить в скобках. Если добавить дополнительное условие, например, |4-b| > 0, то в итоге получится 2 * |4-b| = 2 *(4 - b). В качестве неизвестного элемента также может быть задано конкретное число, которое следует принимать во внимание, т.к. оно будет влиять на знак выражения.

Уравнения с модулями, методы решений. Часть 1.

Прежде чем приступать к непосредственному изучению техник решения таких уравнений, важно понять суть модуля, его геометрическое значение. Именно в понимании определения модуля и его геометрическом смысле, заложены основные методы решения таких уравнений. Так называемый, метод интервалов при раскрытии модульных скобок, настолько эффективен, что используя его возможно решить абсолютно любое уравнение или неравенство с модулями. В этой части мы подробно изучим два стандартных метода: метод интервалов и метод замены уравнения совокупностью.

Однако, как мы убедимся, эти методы, всегда эффективные, но не всегда удобные и могут приводить к долгим и даже не очень удобным вычислениям, которые естественно потребуют большего времени на их решение. Поэтому важно знать и те методы, которые решение определенных структур уравнений значительно упрощают. Возведение обеих частей уравнения в квадрат, метод введения новой переменной, графический метод, решение уравнений, содержащих модуль под знаком модуля. Эти методы мы рассмотрим в следующей части.

Определение модуля числа. Геометрический смысл модуля.

Первым делом познакомимся с геометрическим смыслом модуля:

Модулем числа а (|а|) называют расстояние на числовой прямой от начала координат (точки 0) до точки А(а) .

Исходя из этого определения рассмотрим некоторые примеры:

|7| - это расстояние от 0 до точки 7, конечно оно равно 7. → | 7 |=7

|-5|- это расстояние от 0 до точки -5 и оно равно: 5. → |-5| = 5

Все мы понимаем расстояние не может быть отрицательным! Поэтому |х| ≥ 0 всегда!

Решим уравнение: |х |=4

Это уравнение можно прочитать так: расстояние от точки 0 до точки x равно 4. Ага, получается, от 0 мы можем двигаться как влево так и вправо, значит двигаясь влево на расстояние равное 4 мы окажемся в точке: -4, а двигаясь вправо окажемся в точке: 4. Действительно, |-4 |=4 и |4 |=4.

Отсюда ответ х=±4.

При внимательном изучении предыдущего уравнения можно заметить, что: расстояние вправо по числовой прямой от 0 до точки равно самой точке, а расстояние влево от 0 до числа равно противоположному числу! Понимая, что вправо от 0 положительные числа, а влево от 0 отрицательные, сформулируем определения модуля числа: модулем (абсолютной величиной) числа х (|х|) называется само число х , если х ≥0, и число –х , если х <0.

Здесь нам надо найти множество точек на числовой прямой расстояние от 0 до которых будет меньше 3, давайте представим числовую прямую, на ней точка 0, идем влево и считаем один (-1), два (-2) и три (-3), стоп. Дальше пойдут точки, которые лежат дальше 3 или расстояние до которых от 0 больше чем 3, теперь идем вправо: один, два, три, опять стоп. Теперь выделяем все наши точки и получаем промежуток х:(-3;3).

Важно, чтобы вы это четко видели, если пока не получается, нарисуйте на бумаге и посмотрите, чтобы эта иллюстрация была вам полностью понятна, не поленитесь и попробуйте в уме увидеть решения следующих заданий:

|х |=11, х=? |х|=-5, х=?

|х | <8, х-? |х| <-6, х-?

|x |>2, х-? |x|> -3, х-?

|π-3|=? |-х²-10|=?

|√5-2|=? |2х-х²-3|=?

|х²+2|=? |х²+4|=0

|х²+3х+4|=? |-х²+9| ≤0

Обратили внимание на странные задания во втором столбце? Действительно, расстояние не может быть отрицательным поэтому: |х|=-5- не имеет решений, конечно же оно не может быть и меньше 0, поэтому: |х| <-6 тоже не имеет решений, ну и естественно, что любое расстояние будет больше отрицательного числа, значит решением |x|> -3 являются все числа.

После того как вы научитесь быстро видеть рисунки с решениями читайте дальше.

Модуль числа вводится новое понятие в математике. Разберем подробно, что такое модуль числа и как с ним работать?

Рассмотрим пример:

Мы вышли из дома в магазин. Прошли 300 м, математически это выражение можно записать как +300, смысл числа 300 от знака “+” не поменяется. Расстояние или модуль числа в математике это одно и тоже можно записать так: |300|=300. Знак модуля числа обозначается двумя вертикальными линиями.

А потом в обратном направлении прошли 200м. Математически обратный путь мы можем записать как -200. Но мы не говорим так “мы прошли минус двести метров”, хотя мы вернулись, потому что расстояние как величина остается положительной. Для этого в математике ввели понятие модуля. Записать расстояние или модуль числа -200 можно так: |-200|=200.

Свойства модуля.

Определение:
Модуль числа или абсолютная величина числа – это расстояние от отправной точки до точки назначения.

Модуль целого числа не равного нулю, всегда положительное число.

Записывается модуль так:

1. Модуль положительного числа равно самому числу.
| a|= a

2. Модуль отрицательного числа равно противоположному числу.
|- a|= a

3. Модуль нуля, равен нулю.
|0|=0

4. Модули противоположных чисел равны.
| a|=|- a|= a

Вопросы по теме:
Что такое модуль числа?
Ответ: модуль — это расстояние от отправной точки до точки назначения.

Если перед целым числом поставить знак “+” , что произойдет?
Ответ: число не поменяет свой смысл, например, 4=+4.

Если перед целым числом поставить знак “-” , что произойдет?
Ответ: число изменится на , например, 4 и -4.

У каких чисел одинаковый модуль?
Ответ: у положительных чисел и нуля модуль будет тот же. Например, 15=|15|.

У каких чисел модуль – противоположное число?
Ответ: у отрицательных чисел, модуль будет равен противоположному числу. Например, |-6|=6.

Пример №1:
Найдите модуль чисел: а) 0 б) 5 в) -7?

Решение:
а) |0|=0
б) |5|=5
в)|-7|=7

Пример №2:
Существуют ли два различных числа, модули которых равны?

Решение:
|10|=10
|-10|=10

Модули противоположных чисел равны.

Пример №3:
Какие два противоположных числа, имеют модуль 9?

Решение:
|9|=9
|-9|=9

Ответ: 9 и -9.

Пример №4:
Выполните действия: а) |+5|+|-3| б) |-3|+|-8| в)|+4|-|+1|

Решение:
а) |+5|+|-3|=5+3=8
б) |-3|+|-8|=3+8=11
в)|+4|-|+1|=4-1=3

Пример №5:
Найдите: а) модуль числа 2 б) модуль числа 6 в) модуль числа 8 г) модуль числа 1 д) модуль числа 0.
Решение:

а) модуль числа 2 обозначается как |2| или |+2| это одно и тоже.
|2|=2

б) модуль числа 6 обозначается как |6| или |+6| это одно и тоже.
|6|=6

в) модуль числа 8 обозначается как |8| или |+8| это одно и тоже.
|8|=8

г) модуль числа 1 обозначается как |1| или |+1| это одно и тоже.
|1|=1

д) модуль числа 0 обозначается как |0|, |+0| или |-0| это одно и тоже.
|0|=0

a - это само это число. Число в модуле:

|а| = а

Модуль комплексного числа.

Предположим, есть комплексное число , которое записано в алгебраическом виде z=x+i·y , где x и y - действительные числа, которые представляют собой действительную и мнимую части комплексного числа z , а - мнимая единица.

Модулем комплексного числа z=x+i·y является арифметический квадратный корень из суммы квадратов действительной и мнимой части комплексного числа.

Модуль комплексного числа z обозначают так , значит, определение модуля комплексного числа можно записать так: .

Свойства модуля комплексных чисел.

  • Область определения: вся комплексная плоскость.
  • Область значений: }