Эллипс в декартовой системе координат. Уравнение эллипса

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

где A, B, C, D, E, F - числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

где a и b (a > b ) - длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a , О ) и (- a , О ), а ось ординат - в точках (b , О ) и (- b , О ). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат - малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность - частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a /b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия - эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось - это a = 5 , меньшая полуось - это b = 4 . Получаем каноническое уравнение эллипса:

Точки и , обозначенные зелёным на большей оси, где

называются фокусами .

называется эксцентриситетом эллипса.

Отношение b /a характеризует "сплюснутость" эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

Если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

Если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат - каноническое уравнение эллипса:

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c , нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c , определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если - произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и - расстояния до этой точки от фокусов , то формулы для расстояний - следующие:

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a .

Прямые, определяемые уравнениями

называются директрисами эллипса (на чертеже - красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и - расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Можно показать (мы этого не делаем), что уравнение (2) равносильно уравнению (1), хотя оно и получено из (1) путем неэквивалентных преобразований. Это и означает, что уравнение (2)-уравнение данного эллипса. Оно называется каноническим (т.е. наиболее простым).

Видно, что уравнение эллипса есть уравнение 2-ого порядка, т.е. эллипс-линия 2-го порядка.

Для эллипса введем понятие эксцентриситет. Это величина . Для эллипса эксцентриситет . Так как с и а известны, то тоже известен. Выражение фокальных радиусов точки М(х, у) эллипса легко получаем из предыдущих рассуждений: . r 2 найдем из равенства (3)

Замечание Если в стол вбить два гвоздя (F1 и F2), привязать к ним обоими концами шнурок, длина которого больше расстояния между гвоздями (), натянуть шнур и куском мела вести по столу, то он вычертит замкнутую кривую-эллипс, которая симметрична относительно обеих осей и начала координат.

4. Исследование формы эллипса по его каноническому уравнению.

В замечании мы из соображений наглядности сделали вывод о форме эллипса. Проведем теперь исследование формы эллипса, анализируя его каноническое уравнение:

Найдем точки пересечения с осями координат. Если ,у=0, то , , т.е. имеем две точки А1(-а,0) и А2(а,0). Если х=0, то , . Т.е. имеем две точки В1(0,-b) и B2(0,b) (т.к. , то ). Точки А1,А2,В1,В2 называют вершинами эллипса.

2) Область расположения эллипса можно определить из следующих соображений:

а) из уравнения эллипса следует, что , т.е. , т.е. или .

б) аналогично , т.е. или . Это показывает, что весь эллипс расположен в прямоугольнике, образованном прямыми и .

3) Далее, в уравнение эллипса переменные х и у входят только в четных степенях, а это означает, что кривая симметрична относительно каждой из осей и относительно начала координат. Д-но, если радиусу принадлежит точка (х, у), то ему принадлежат и точки (х, -у), (-х, у) и (-х, -у). Поэтому достаточно рассмотреть лишь ту часть эллипса, которая лежит в первой четверти, где и .

4) Из уравнения эллипса имеем , а в первой четверти . Если х=0, то у=b. Это есть точка B2(0,b). Пусть х увеличивается от 0 до а, тогда y уменьшается от b до 0. Тем самым точка М(х, у), начиная из точки В2(0, b) описывая дугу приходит в точку А(а,0). Можно строго доказать, что дуга выпуклостью направлена вверх. Отражая зеркально эту дугу в осях координат и начале, мы и получим весь эллипс. Оси симметрии эллипса называются его осями, точка О пересечения их-центром эллипса. Длину отрезков ОА1=ОА2=а называют большой полуосью эллипса, отрезков ОВ1,ОВ2=b-малой полуосью эллипса, (а>b), c-полуфокусным расстоянием. Величину просто пояснить геометрически.

При а=b получаем из канонического уравнения эллипса --уравнение окружности. Для окружности , т.е. F1=F2=0. .

Таким образом, окружность-это частный случай эллипса, когда фокусы его совпадают с центром и эксцентриситет=0. Чем больше эксцентриситет, тем больше вытянут эллипс.

Замечание. Из канонического уравнения эллипса легко заключить, что эллипс можно задать в параметрической форме. x=a cos t

y=b sin t, где a, b –большая и малая полуоси, t-угол.

5. Определение и вывод канонического уравнения гиперболы.

Гиперболой называется ГМТ плоскости, для которых разность расстояний от двух фиксированных точек F1F2 плоскости, называемых фокусами, есть постоянная величина (не равная 0 и меньшая, чем фокусное расстояние F1F2).

Будем обозначать, по-прежнему, F1F2=2с, а разность расстояний-2а (а<с). Систему координат выберем как и в случае эллипса.

Пусть М (х,у)-текущая точка гиперболы. По определению МF1-MF2= или r 1 -r 2 = = или --(1). –это и есть уравнение гиперболы.

Избавляемся от иррациональности в (1): уединим один корень, возведем обе части в квадрат, получим: или , снова возведем в квадрат:

Откуда .

Разделим на . Введем обозначение . Тогда --(2). Уравнение (2), как можно показать, равносильно уравнению (1), а потому есть уравнение данной гиперболы. Его называют каноническим уравнением гиперболы. Видим, что уравнение гиперболы тоже второй степени, значит, гипербола-линия второго порядка .

Эксцентриситет гиперболы . Выражение фокальных радиусов через легко получить из предыдущего , тогда находим из .

6. Исследование формы гиперболы по ее каноническому уравнению.

Рассуждаем аналогично тому, как при исследовании эллипса.

1. Находим точки пересечения с осями гиперболы. Если х=0, то . Точек пересечения с осью ОУ нет. Если у=0, то . Точки пересечения , . Они называются вершинами гиперболы.

2. Область расположения гиперболы: , т.е. или . Значит, гипербола расположена вне полосы, ограниченной прямыми x=-a и х=а .

3. Гипербола обладает всеми видами симметрии, т.к. х и у входят в четных степенях. Поэтому достаточно рассмотреть ту часть гиперболы, которая расположена в первой четверти.

4. Из уравнения гиперболы (2) в первой четверти имеем . При х=а, у=0 имеем точку ; при , т.е. кривая уходит вправо вверх. Чтобы ход представить яснее, рассмотрим две вспомогательные прямые, проходящие через начало координат и являющиеся диагоналями прямоугольника со сторонами 2а и 2b: BCB’C’. Они имеют уравнения и . Докажем, что текущая точка гиперболы М(х,у) уходя в бесконечность неограниченно приближается к прямой . Возьмем произвольную точку х и сравним соответствующие ординаты точки гиперболы и --прямой. Очевидно, что У>у . MN=Y-y= .

Видим, что при , т.е. кривая неограниченно приближается к прямой по мере удаления от начала координат. Это доказывает, что прямая является асимптотой гиперболы. Причем гипербола не пересекает асимптоту. Этого достаточно, чтобы построить часть гиперболы. Она обращена выпуклостью вверх. Остальные части достраиваются по симметрии. Заметим, что оси симметрии гиперболы (оси координат) называются ее осями , точка пересечения осей-центром гиперболы. Одна ось пересекает гиперболу (действительная ось), другая-нет (мнимая). Отрезок а называют действительной полуосью, отрезок b -мнимой полуосью. Прямоугольник BCB’C’-называется основным прямоугольником гиперболы.

Если а=b , то асимптоты образуют с осями координат углы по . Тогда гиперболу или называют равносторонней или равнобочной. Основной прямоугольник превращается в квадрат. Асимптоты ее перпендикулярны друг другу.

Замечание.

Иногда рассматривают гиперболу, каноническое уравнение которой --(3). Ее называют сопряженной по отношению к гиперболе (2). Гипербола (3) имеет действительную ось вертикальную, мнимую-горизонтальную. Ее вид сразу устанавливается, если переставить х и у , а и b (она превращается в прежнюю). Но тогда гипербола (3) имеет вид:

Вершины ее .

5.Как уже указывалось, уравнение равносторонней гиперболы (а=b) , когда оси координат совпадают с осями гиперболы, имеет вид . (4)

Т.к. асимптоты равносторонней гиперболы перпендикулярны, то их тоже можно взять за оси координат ОХ 1 и ОУ 1 . Это равносильно повороту прежней системы ОХУ на угол . Формулы поворота на угол следующие:


Тогда в новой системе координат ОХ 1 У 1 уравнение (4) перепишется:


Или или . Обозначая , получим или (5)-это уравнение равносторонней гиперболы , отнесенной к асимптотам (именно этот вид гиперболы рассматривался в школе).

Замечание : Из уравнения следует, что площадь любого прямоугольника, построенного на координатах любой точки гиперболы М(х,у) одна и та же: S=k 2 .

7. Определение и вывод канонического уравнение параболы.

Параболой называется ГМТ плоскости, для каждой из которых расстояние от фиксированной точки Fплоскости, называемой фокусом , равно расстоянию от фиксированной прямой, называемой директрисой (фокус вне директрисы).

Будем обозначать расстояние от Fдо директрисы через р и называть параметром параболы. Выберем следующим образом систему координат: ось ОХ проведем через точку Fперпендикулярно директрисе NP. Начало координат выберем в середине отрезкаFP.

В этой системе: .

Возьмем произвольную точку М(х,у) с текущими координатами (х,у). Поэтому

Отсюда (1)-это и есть уравнение параболы. Упростим:

Или (2)-это и есть каноническое уравнение параболы. Можно показать, что (1) и (2) равносильны.

Уравнение (2) есть уравнение 2-го порядка, т.е. парабола-линия 2-го порядка.

8. Исследование формы параболы по ее каноническому уравнению.

(р>0).

1) х=0, у=0 парабола проходит через начало координат точку О. Ее называют вершиной параболы.

2) , т.е. парабола располагается правее оси ОУ, в правой полуплоскости.

3) у входит в четной степени, потому парабола симметрична относительно оси ОХ, следовательно, достаточно построить в первой четверти.

4) в 1 четверти при , т.е. парабола идет вверх вправо. Можно показать, что выпуклостью-вверх. По симметрии строим внизу. Ось ОУ-касательная к параболе.

Очевидно, фокальный радиус-- . Отношение называется эксцентриситетом : . Ось симметрии параболы (у нас ОХ) называется осью параболы.

Заметим, что уравнение тоже есть парабола, но направленная в противоположную сторону. Уравнения тоже задают параболы, осью которых является ось ОУ.

или в более привычном виде , где .

Уравнение определяет обычную параболу со смещенной вершиной .

Замечания. 1) Между всеми четырьмя линиями 2-го порядка существует близкое родство-все они являются коническими сечениями . Если взять конус из двух полостей, то при сечении плоскостью перпендикулярной оси конуса получим окружность, если чуть наклонить плоскость сечения получим эллипс; если плоскость параллельна образующей, то в сечении-парабола, если плоскость пересекает обе

полости-гипербола.

2) Можно доказать, что если луч света исходя из фокуса параболы, отражается от нее, то отраженный луч идет параллельно оси параболы-это используется при действии прожекторов-параболический отражатель, а в фокусе-источник света. Получается направленный поток света.

3) Если представить запуск спутника Земли из точки Т, лежащей за пределами атмосферы в горизонтальном направлении, то если начальная скорость v 0 недостаточна, то спутник вращаться вокруг Земли не будет. При достижении 1-ой космической скорости спутник будет вращаться вокруг Земли по круговой орбите с центром в центре Земли. Если начальную скорость увеличить, то вращение будет происходить по эллипсу, центр Земли будет в одном из фокусов. При достижении 2-ой космической скорости траектория станет параболической и спутник не вернется в точку Т, но будет находиться в пределах Солнечной системы. Т.е. парабола есть эллипс с одним бесконечно удаленным фокусом. При дальнейшем увеличении начальной скорости траектория станет гиперболической и второй фокус появиться с другой стороны. Центр Земли будет все время находиться в фокусе орбиты. Спутник уйдет за пределы Солнечной системы.

Каноническое уравнение эллипса имеет вид

где a – большая полуось; b – малая полуось. Точки F1(c,0) и F2(-c,0) − c называются

a, b - полуоси эллипса.

Нахождение фокусов, эксцентриситета, директрис эллипса, если известно его каноническое уравнение.

Определение гиперболы. Фокусы гиперболы.

Определение. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами есть величина постоянная, меньшая расстояния между фокусами.

По определению |r1 – r2|= 2a. F1, F2 – фокусы гиперболы. F1F2 = 2c.

Каноническое уравнение гиперболы. Полуоси гиперболы. Построение гиперболы, если известно ее каноническое уравнение.

Каноническое уравнение:

Большая полуось гиперболы составляет половину минимального расстояния между двумя ветвями гиперболы, на положительной и отрицательной сторонах оси (слева и справа относительно начала координат). Для ветви расположенной на положительной стороне, полуось будет равна:

Если выразить её через коническое сечение и эксцентриситет, тогда выражение примет вид:

Нахождение фокусов, эксцентриситета, директрис гиперболы, если известно ее каноническое уравнение.

Эксцентриситет гиперболы

Определение. Отношение называется эксцентриситетом гиперболы, где с –

половина расстояния между фокусами, а – действительная полуось.

С учетом того, что с2 – а2 = b2:

Если а = b, e = , то гипербола называется равнобочной (равносторонней).

Директрисы гиперболы

Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/e от него, называются директрисами гиперболы. Их уравнения: .

Теорема. Если r – расстояние от произвольной точки М гиперболы до какого- либо фокуса, d – расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r/d – величина постоянная, равная эксцентриситету.

Определение параболы. Фокус и директриса параболы.

Парабола. Параболой называется геометрическое место точек, каждая из которых одинаково удалена от заданной фиксированной точки и от заданной фиксированной прямой. Точка, о которой идет речь в определении, называется фокусом параболы, а прямая - ее директрисой.

Каноническое уравнение параболы. Параметр параболы. Построение параболы.

Каноническое уравнение параболы в прямоугольной системе координат: (или , если поменять местами оси).

Построение параболы при заданной величине параметра p выполняется в следующей последовательности:

Проводят ось симметрии параболы и откладывают на ней отрезок KF=p;

Через точку K перпендикулярно оси симметрии проводят директрису DD1;

Отрезок KF делят пополам получают вершину 0 параболы;

От вершины отмеряют ряд произвольных точек 1, 2, 3, 5, 6 с постепенно увеличивающемся расстоянием между ними;

Через эти точки проводят вспомогательные прямые перпендикулярные оси параболы;

На вспомогательных прямых делают засечки радиусом равным расстоянию от прямой до директрисы;

Полученные точки соединяют плавной кривой.

Это геометрическая фигура, которая ограничена кривой, заданной уравнением .

Он имеет два фокуса. Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.

Чертеж фигуры эллипс

F 1 , F 2 – фокусы. F 1 = (c ; 0); F 2 (- c ; 0)

с – половина расстояния между фокусами;

a – большая полуось;

b – малая полуось.

Теорема. Фокусное расстояние и полуоси связаны соотношением:

a 2 = b 2 + c 2 .

Доказательство: В случае, если точка М находится на пересечении эллипса с вертикальной осью, r 1 + r 2 = 2*(по теореме Пифагора). В случае, если точка М находится на пересечении его с горизонтальной осью, r 1 + r 2 = a – c + a + c. Т.к. по определению сумма r 1 + r 2 – постоянная величина, то, приравнивая, получаем:

r 1 + r 2 = 2 a .

Эксцентриситет фигуры эллипс

Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом .

Т.к. с < a , то е < 1.

Определение. Величина k = b / a называется коэффициентом сжатия , а величина 1 – k = (a – b)/ a называется сжатием .

Коэффициент сжатия и эксцентриситет связаны соотношением: k 2 = 1 – e 2 .

Если a = b (c = 0, e = 0, фокусы сливаются), то эллипс превращается в окружность.

Если для точки М(х 1 , у 1) выполняется условие: , то она находится внутри эллипса, а если , то точка находится вне его.

Теорема. Для произвольной точки М(х, у), принадлежащей фигуре эллипс верны соотношения :

r 1 = a – ex , r 2 = a + ex .

Доказательство. Выше было показано, что r 1 + r 2 = 2 a . Кроме того, из геометрических соображений можно записать:

После возведения в квадрат и приведения подобных слагаемых:

Аналогично доказывается, что r 2 = a + ex . Теорема доказана.

Директрисы фигуры эллипс

С фигурой эллипс связаны две прямые, называемые директрисами . Их уравнения:

x = a / e ; x = - a / e .

Теорема. Для того, чтобы точка лежала на границе фигуры эллипс, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е.

Пример. Составить , проходящей через левый фокус и нижнюю вершину фигуры эллипс, заданного уравнением:

Лекции по алгебре и геометрии. Семестр 1.

Лекция 15. Эллипс.

Глава 15. Эллипс.

п.1. Основные определения.

Определение. Эллипсом называется ГМТ плоскости сумма расстояний которых до двух фиксированных точек плоскости, называемых фокусами, есть величина постоянная.

Определение. Расстояние от произвольной точки М плоскости до фокуса эллипса называется фокальным радиусом точки М.

Обозначения:
– фокусы эллипса,
– фокальные радиусы точки М.

По определению эллипса, точка М является точкой эллипса тогда и только тогда, когда
– постоянная величина. Эту постоянную принято обозначать 2а:

. (1)

Заметим, что
.

По определению эллипса, его фокусы есть фиксированные точки, поэтому расстояние между ними есть также величина постоянная для данного эллипса.

Определение. Расстояние между фокусами эллипса называется фокусным расстоянием.

Обозначение:
.

Из треугольника
следует, что
, т.е.

.

Обозначим через b число равное
, т.е.

. (2)

Определение. Отношение

(3)

называется эксцентриситетом эллипса.

Введем на данной плоскости систему координат, которую мы будем называть канонической для эллипса.

Определение. Ось, на которой лежат фокусы эллипса, называется фокальной осью.

Построим каноническую для эллипса ПДСК, см. рис.2.

В качестве оси абсцисс выбираем фокальную ось, а ось ординат проводим через середину отрезка
перпендикулярно фокальной оси.

Тогда фокусы имеют координаты
,
.

п.2. Каноническое уравнение эллипса.

Теорема. В канонической для эллипса системе координат уравнение эллипса имеет вид:

. (4)

Доказательство. Доказательство проведем в два этапа. На первом этапе мы докажем, что координаты любой точки, лежащей на эллипсе удовлетворяют уравнению (4). На втором этапе мы докажем, что любое решение уравнения (4) дает координаты точки, лежащей на эллипсе. Отсюда будет следовать, что уравнению (4) удовлетворяют те и только те точки координатной плоскости, которые лежат на эллипсе. Отсюда и из определения уравнения кривой будет следовать, что уравнение (4) является уравнением эллипса.

1) Пусть точка М(х, у) является точкой эллипса, т.е. сумма ее фокальных радиусов равна 2а:

.

Воспользуемся формулой расстояния между двумя точками на координатной плоскости и найдем по этой формуле фокальные радиусы данной точки М:

,
, откуда получаем:

Перенесем один корень в правую часть равенства и возведем в квадрат:

Сокращая, получаем:

Приводим подобные, сокращаем на 4 и уединяем радикал:

.

Возводим в квадрат

Раскрываем скобки и сокращаем на
:

откуда получаем:

Используя равенство (2), получаем:

.

Разделив последнее равенство на
, получаем равенство (4), ч.т.д.

2) Пусть теперь пара чисел (х, у) удовлетворяет уравнению (4) и пусть М(х, у) – соответствующая точка на координатной плоскости Оху.

Тогда из (4) следует:

.

Подставляем это равенство в выражение для фокальных радиусов точки М:

.

Здесь мы воспользовались равенством (2) и (3).

Таким образом,
. Аналогично,
.

Теперь заметим, что из равенства (4) следует, что

или
и т.к.
, то отсюда следует неравенство:

.

Отсюда, в свою очередь, следует, что

или
и

,
. (5)

Из равенств (5) следует, что
, т.е. точка М(х, у) является точкой эллипса, ч.т.д.

Теорема доказана.

Определение. Уравнение (4) называется каноническим уравнением эллипса.

Определение. Канонические для эллипса оси координат называются главными осями эллипса.

Определение. Начало канонической для эллипса системы координат называется центром эллипса.

п.3. Свойства эллипса.

Теорема. (Свойства эллипса.)

1. В канонической для эллипса системе координат, все

точки эллипса находятся в прямоугольнике

,
.

2. Точки лежат на

3. Эллипс является кривой, симметричной относительно

своих главных осей.

4. Центр эллипса является его центром симметрии.

Доказательство. 1, 2) Сразу же следует из канонического уравнения эллипса.

3, 4) Пусть М(х, у) – произвольная точка эллипса. Тогда ее координаты удовлетворяют уравнению (4). Но тогда координаты точек также удовлетворяют уравнению (4), и, следовательно, являются точками эллипса, откуда и следуют утверждения теоремы.

Теорема доказана.

Определение. Величина 2а называется большой осью эллипса, величина а называется большой полуосью эллипса.

Определение. Величина 2b называется малой осью эллипса, величина b называется малой полуосью эллипса.

Определение. Точки пересечения эллипса с его главными осями называются вершинами эллипса.

Замечание. Эллипс можно построить следующим образом. На плоскости в фокусы "забиваем по гвоздю" и закрепляем на них нить длиной
. Затем берем карандаш и с его помощью натягиваем нить. Затем передвигаем карандашный грифель по плоскости, следя за тем, чтобы нить была в натянутом состоянии.

Из определения эксцентриситета следует, что

Зафиксируем число а и устремим число с к нулю. Тогда при
,
и
. В пределе мы получаем

или
– уравнение окружности.

Устремим теперь
. Тогда
,
и мы видим, что в пределе эллипс вырождается в отрезок прямой
в обозначениях рисунка 3.

п.4. Параметрические уравнения эллипса.

Теорема. Пусть
– произвольные действительные числа. Тогда система уравнения

,
(6)

является параметрическими уравнениями эллипса в канонических для эллипса системе координат.

Доказательство. Достаточно доказать, что система уравнений (6) равносильна уравнению (4), т.е. они имеют одно и то же множество решений.

1) Пусть (х, у) – произвольное решение системы (6). Разделим первое уравнение на а, второе – на b, возводим оба уравнения в квадрат и складываем:

.

Т.е. любое решение (х, у) системы (6) удовлетворяет уравнению (4).

2) Обратно, пусть пара (х, у) является решением уравнения (4), т.е.

.

Из этого равенства следует, что точка с координатами
лежит на окружности единичного радиуса с центром в начале координат, т.е. является точкой тригонометрической окружности, которой соответствует некоторый угол
:

Из определения синуса и косинуса сразу же следует, что

,
, где
, откуда и следует, что пара (х, у) является решением системы (6), ч.т.д.

Теорема доказана.

Замечание. Эллипс можно получить в результате равномерного "сжатия" окружности радиуса а к оси абсцисс.

Пусть
– уравнение окружности с центром в начале координат. "Сжатие" окружности к оси абсцисс есть ни что иное, как преобразование координатной плоскости, осуществляемое по следующему правилу. Каждой точке М(х, у) поставим в соответствие точку этой же плоскости
, где
,
– коэффициент "сжатия".

При этом преобразовании каждая точка окружности "переходит" в другую точку плоскости, имеющую ту же самую абсциссу, но меньшую ординату. Выразим старую ординату точки через новую:

и подставим в уравнение окружности:

.

Отсюда получаем:

. (7)

Отсюда следует, что если до преобразования "сжатия" точка М(х, у) лежала на окружности, т.е. ее координаты удовлетворяли уравнению окружности, то после преображования "сжатия" эта точка "перешла" в точку
, координаты которой удовлетворяют уравнению эллипса (7). Если мы хотим получить уравнение эллипса с малой полуосью b, то нужно взять коэффициент сжатия

.

п.5. Касательная к эллипсу.

Теорема. Пусть
– произвольная точка эллипса

.

Тогда уравнение касательной к этому эллипсу в точке
имеет вид:

. (8)

Доказательство. Достаточно рассмотреть случай, когда точка касания лежит в первой или второй четверти координатной плоскости:
. Уравнение эллипса в верхней полуплоскости имеет вид:

. (9)

Воспользуемся уравнением касательной к графику функции
в точке
:

где
– значение производной данной функции в точке
. Эллипс в первой четверти можно рассматривать как график функции (8). Найдем ее производную и ее значение в точке касания:

,

. Здесь мы воспользовались тем, что точка касания
является точкой эллипса и поэтому ее координаты удовлетворяют уравнению эллипса (9), т.е.

.

Подставляем найденное значение производной в уравнение касательной (10):

,

откуда получаем:

Отсюда следует:

Разделим это равенство на
:

.

Осталось заметить, что
, т.к. точка
принадлежит эллипсу и ее координаты удовлетворяют его уравнению.

Аналогично доказывается уравнение касательной (8) в точке касания, лежащей в третьей или четвертой четверти координатной плоскости.

И, наконец, легко убеждаемся, что уравнение (8) дает уравнение касательной в точках
,
:

или
, и
или
.

Теорема доказана.

п.6. Зеркальное свойство эллипса.

Теорема. Касательная к эллипсу имеет равные углы с фокальными радиусами точки касания.

Пусть
– точка касания,
,
– фокальные радиусы точки касания, Р и Q – проекции фокусов на касательную, проведенную к эллипсу в точке
.

Теорема утверждает, что

. (11)

Это равенство можно интерпретировать как равенство углов падения и отражения луча света от эллипса, выпущенного из его фокуса. Это свойство получило название зеркального свойства эллипса:

Луч света, выпущенный из фокуса эллипса, после отражения от зеркала эллипса проходит через другой фокус эллипса.

Доказательство теоремы. Для доказательства равенства углов (11) мы докажем подобие треугольников
и
, в которых стороны
и
будут сходственными. Так как треугольники прямоугольные, то достаточно доказать равенство

. (12)

Так как по построению
– расстояние от фокуса до касательной L (см. рис.7),
. Воспользуемся формулой расстояния от точки до прямой на плоскости:

Так как уравнение касательной к эллипсу в точке
имеет вид

,

,

.

Здесь мы воспользовались формулами (5) для фокальных радиусов точки эллипса.

Теорема доказана.

Второе доказательство теоремы:

,
,
– нормальный вектор касательной L.

. Отсюда,
.

Аналогично находим,
и
, ч.т.д.

п.7. Директрисы эллипса.

Определение. Директрисами эллипса называются две прямые, которые в канонической для эллипса системе координат имеют уравнения

или
. (13)

Теорема. Пусть М – произвольная точка эллипса, , – ее фокальные радиусы, – расстояние от точки М до левой директрисы, – до правой. Тогда

, (14)

где – эксцентриситет эллипса.

Доказательство.

Пусть М(х, у) – координаты произвольной точки эллипса. Тогда

,
,

откуда и следуют равенства (14).

Теорема доказана.

п.8. Фокальный параметр эллипса.

Определение. Фокальным параметром эллипса называется длина перпендикуляра, восстановленного в его фокусе до пересечения с эллипсом.

Фокальный параметр принято обозначать буквой р.

Из определения следует, что фокальный параметр

.

Теорема. Фокальный параметр эллипса равен

. (15)

Доказательство. Так как точка N(–с; р) явяляется точкой эллипса
, то ее координаты удовлетворяют его уравнению:

.

Отсюда находим

,

откуда и следует (15).

Теорема доказана.

п.9. Второе определение эллипса.

Теорема из п.7. может служить определением эллипса.

Определение. Эллипсом называется ГМТ для которых отношение расстояния до фиксированной точки плоскости, называемой фокусом, к расстоянию до фиксированной прямой, называемой директрисой, есть величина постоянная меньше единицы и называемая его эксцентриситетом:

.

Разумеется, в этом случае, первое определение эооипса является теоремой, которую необходимо доказывать.